Karlin-Altschul statistics

\[E(S) = Kmne^{-\lambda S}\]
  • \(m\) is length of sequence 1, \(n\) is length of sequence 2, \(K\) is a constant

  • Given the substitution matrix \(S_{i,j}\), and frequency of the character \(a_{i}\) and \(a_{j}\)

\[\sum_{i,j=1}^{r}p_{i}p_{j}e^{s_{ij} \lambda}=1\] \[P(S<x)=e^{-e^{-\lambda(x-u)}}=e^{-Kmne^{-{\lambda} x}}\] \[P(S{\geq}x)=1-P(S<x)=1-e^{-Kmne^{-{\lambda} x}}=1-e^{-E(x)}\]